posix线程同步机制
1、java多线程,对象锁是什么概念?
java线程:1.线程中一些基本术语和概念
1.1线程的几个状态
初始化状态
就绪状态
运行状态
阻塞状态
终止状态
1.2 Daemon线程
Daemon线程区别一般线程之处是:主程序一旦结束,Daemon线程就会结束。
1.3锁的定义
为了协调多个并发运行的线程使用共享资源才引入了锁的概念。
1.4死锁
任何多线程应用程序都有死锁风险。当一组线程中的每一个都在等待一个只
有该组中另一个线程才能引起的事件时,我们就说这组线程死锁了。换一个说法
就是一组线程中的每一个成员都在等待别的成员占有的资源时候,就可以说这组
线程进入了死锁。死锁的最简单情形是:线程 A 持有对象 X 的独占锁,并且
在等待对象 Y 的锁,而线程 B 持有对象 Y 的独占锁,却在等待对象 X 的锁。
除非有某种方法来打破对锁的等待(Java 锁定不支持这种方法),否则死锁的线
程将永远等下去。
1.5.Java对象关于锁的几个方法
1.5.1 wait方法
wait方法是java根对象Object含有的方法,表示等待获取某个锁。在wait方法进入前,会释放相应的锁,在wait方法返回时,会再次获得某个锁。
如果wait()方法不带有参数,那只有当持有该对象锁的其他线程调用了notify或者notifyAll方法,才有可能再次获得该对象的锁。
如果wait()方法带有参数,比如:wait(10),那当持有该对象锁的其他线程调用了notify或者notifyAll方法,或者指定时间已经过去了,才有可能再次获得该对象的锁。
参考 thread.lock.SleepAndWait
1.5.2 notify/notifyAll方法
这里我就不再说明了。哈哈,偷点懒。
1.5.3 yield方法
yield()会自动放弃CPU,有时比sleep更能提升性能。
1.6锁对象(实例方法的锁)
在同步代码块中使用锁的时候,担当锁的对象可以是这个代码所在对象本身或者一个单独的对象担任,但是一定要确保锁对象不能为空。如果对一个null对象加锁,会产生异常的。原则上不要选择一个可能在锁的作用域中会改变值的实例变量作为锁对象。
锁对象,一种是对象自己担任,一种是定义一个普通的对象作为private property来担任,另外一种是建立一个新的类,然后用该类的实例来担任。
参考 :
thread.lock.UseSelfAsLock,使用对象自己做锁对象
thread.lock.UseObjAsLock 使用一个实例对象作锁对象
thread.lock.UseAFinalObjAsLock使用常量对象作为一个锁对象
1.7类锁
实例方法存在同步的问题,同样,类方法也存在需要同步的情形。一般类方法的类锁是一个static object来担任的。当然也可以采用类本身的类对象来作为类锁。
一个类的实例方法可以获得该类实例锁,还可以尝试去访问类方法,包含类同步方法,去获得类锁。
一个类的类方法,可以尝试获得类锁,但是不可以尝试直接获得实例锁。需要先生成一个实例,然后在申请获得这个实例的实例锁。
参考
thread.lock.UseStaticObjAsStaticLock 使用类的属性对象作为类锁。
thread.lock.UseClassAsStaticLock使用类的类对象作为类锁
1.8.线程安全方法与线程不安全方法
如果一个对象的所有的public方法都是同步方法,也就是说是public方法是线程安全的,那该对象的private方法,在不考虑继承的情况下,可以设置为不是线程安全的方法。
参考 thread.lock.SynMethrodAndNotSynMethrod
1.9类锁和实例锁混合使用
在实例方法中混合使用类锁和实例锁;可以根据前面说的那样使用实例锁和类锁。
在类方法中混合使用类锁和实例锁,可以根据前面说的那样使用类锁,为了使用实例锁,先得生成一个实例,然后实例锁。
参考 thread.lock.StaticLockAndObjLock
1.10锁的粒度问题。
为了解决对象锁的粒度过粗,会导死锁出现的可能性加大,锁的粒度过细,会程序开发维护的工作加大。对于锁的粒度大小,这完全要根据实际开发需要来考虑,很难有一个统一的标准。
1.11.读写锁
一个读写锁支持多个线程同时访问一个对象,但是在同一时刻只有一个线程可以修改此对象,并且在访问进行时不能修改。
有2种调度策略,一种是读锁优先,另外就是写锁优先。
参考 thread.lock.ReadWriteLock
1.12 volatile
在Java中设置变量值的操作,除了long和double类型的变量外都是原子操作,也就是说,对于变量值的简单读写操作没有必要进行同步。这在JVM 1.2之前,Java的内存模型实现总是从主存读取变量,是不需要进行特别的注意的。而随着JVM的成熟和优化,现在在多线程环境下volatile关键字的使用变得非常重要。在当前的Java内存模型下,线程可以把变量保存在本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。要解决这个问题,只需要像在本程序中的这样,把该变量声明为volatile(不稳定的)即可,这就指示JVM,这个变量是不稳定的,每次使用它都到主存中进行读取。一般说来,多任务环境下各任务间共享的标志都应该加volatile修饰。
2.线程之间的通讯
在其他语言中,线程之间可以通过消息队列,共享内存,管道等方式来实现
线程之间的通讯,但是java中可以不采用这样方式,关注的是线程之间的同步。
只要保证相关方法运行的线程安全,信息共享是自然就可以显现了。
2.1屏障
屏障就是这样的一个等待点: 一组线程在这一点被同步,这些线程合并各自的结果或者运行到整体任务的下一阶段。
参考:
thread.lock. BarrierUseExample
thread.lock.Barrier
2.2.锁工具类
提供对线程锁的获取,释放功能。展示了锁的获取释放过程。可以作为一个工具类来使用。
参考:thread.lock. BusyFlag
2.3.条件变量
条件变量是POSIX线程模型提供的一种同步类型,和java中的等待通知机制类似。
虽然java中已经有了等待通知机制,但是为了减少在notify/notifyAll方法中
线程调度的开销,把一些不需要激活的线程屏蔽出去,引入了条件变量。
Java中2个(多个)条件变量可以是同一个互斥体(锁对象)。
参考:thread.lock.CondVar 条件变量类
常见的应用情形:
一个锁控制多个信号通道(例如:多个变量),虽然可以采用简单java等待通知机制,但是线程调度效率不高,而且线程可读性也不是太好,这时候可以采用创建一个锁对象(BusyFlag实例),同时使用这个BusyFlag实例来创建多个条件变量(CondVar 实例)。
经常使用到CondVar类的地方是缓冲区管理,比如:管道操作之类的。先创建一个BusyFlag实例,然后创建CondVar 实例,用这个条件变量描述缓冲区是否为空,另外创建CondVar 实例作条件变量述缓冲区是否满。
现实中,马路的红绿灯,就可以采用条件变量来描述。
3. Java线程调度
3.1 Java优先级
java的优先级别共有10种,加上虚拟机自己使用的优先级别=0这种,总共11种。
大多数情况来说,java线程的优先级设置越高(最高=10),那线程越优先运行。
3.2. 绿色线程
线程运行在虚拟机内,操作系统根本不知道这类线程的存在。
线程是由虚拟机调度的。
3.3 本地线程
线程是由运行虚拟机的操作系统完成的。
3.4 Windows本地线程
操作系统,完全能够看得到虚拟机内的每一个线程,同时虚拟机的线程和操作系统的线程是一一对应的。Java的线程调度室由操作系统底层线程决定的。
在win32平台下,windows线程只有6个优先级别。和java线程优先级别对应如下:
Java线程优先级 Windows 95/nt/2000线程优先级
0 THREAD_ PRIORITY_IDLE
1(Thread.MIN_PRIORITY) THREAD_ PRIORITY_LOWEST
2 THREAD_ PRIORITY_LOWEST
3 THREAD_ PRIORITY_BELOW_NORMAL
4 THREAD_ PRIORITY_BELOW_NORMAL
5 (Thread.NORM_PRIORITY) THREAD_ PRIORITY _NORMAL
6 THREAD_ PRIORITY _ABOVE_NORMAL
7 THREAD_ PRIORITY _ABOVE_NORMA
8 THREAD_ PRIORITY _HIGHEST
9 THREAD_ PRIORITY _HIGHEST
10 (Thread.MAX_PRIORITY) THREAD_ PRIORITY _CRITICAL
3.5线程优先级倒置与继承
如果一个线程持有锁(假设该线程名字=ThreadA,优先级别=5),另外一个线程(假设该线程名字=ThreadB,优先级别=7),现在该线程(ThreadA)处于运行状态,但是线程ThreadB申请需要持有ThreadA所获得的锁,这时候,为了避免死锁,线程A提高其运行的优先级别(提高到ThreadB的优先级别=7),而线程ThreadB为了等待获得锁,降低线程优先级别(降低到ThreadA原来的优先级别=5).
上述的这种情况,对于ThreadA,继承了ThreadB的优先级别,这成为优先级别的继承;对于ThreadB暂时降低了优先级别,成为优先级别的倒置。
当然,一旦线程ThreadA持有的锁释放了,其优先级别也会回到原来的优先级别(优先级别=5)。线程ThreadB获得了相应的锁,那优先级别也会恢复到与原来的值(优先级别=7)。
3.6循环调度
具有同样优先级的线程相互抢占成为循环调度。
4.线程池
创建一个线程也是需要一定代价的,为了降低这个代价,采用了和普通对象池的思想建立线程池,以供系统使用。
线程消耗包括内存和其它系统资源在内的大量资源。除了 Thread 对象所需的内存之外,每个线程都需要两个可能很大的执行调用堆栈。除此以外,JVM 可能会为每个 Java 线程创建一个本机线程,这些本机线程将消耗额外的系统资源。最后,虽然线程之间切换的调度开销很小,但如果有很多线程,环境切换也可能严重地影响程序的性能。
使用线程池的方式是,先建立对象池,然后申请使用线程,程序线程运行,运行完毕,把线程返回线程池。
使用线程池的风险:同步错误和死锁,与池有关的死锁、资源不足和线程泄漏。
大家有空可以研究一下tomcat的线程池实现原理思想。
实际上是tomcat已经在从线程池的使用线程时候加上了事件处理机制。
个人认为,线程池之类的实现,一般不要自己实现,因为自己实现主要是稳定性等方面可能作的不够好。
可以参考 apache的jakarta-tomcat-5.5.6的相关代码,具体是:
jakarta-tomcat-connectors\util\java\org\apache\tomcat\util\threads的相关代码
5工作队列
使用工作队列的好处是不象直接使用线程池那样,当线城池中没有线程可以使用的时
候,使用者需要处于等待状态,不能进行其他任务的处理。
工作队列的工作原理是:
采用后台线程处理方式,客户端把任务提交给工作队列,工作队列有一组内部可以工作线程,这些工作线程从工作队列中取出任务运行,一个任务完成后,就从队列获取下一个任务进行处理。当工作队列中没有任务可以处理时候,工作线程就处于等待状态,直到获得新的任务时候,才进行新的处理。 对象锁。同一时间只保证 一个线程访问方法或变量。
在Java语言中,通过被关键字synchronized修饰的方法或synchronized语句块实现对代码的同步
包含在synchronized方法或语句块中的代码称为被同步的代码(Synchronized Code)
当线程访问被同步的代码时,必须首先竞争代码所属的类的【对象上的锁】,否则线程将等待(阻塞),直到锁被释放.
------------------------------------------------------------------------------------
我们上课用的PPT 上截取的例子如下:
同步语句(synchronized statements)的一般形式如下:
synchronized(<锁对象引用>){
…被同步的代码…
}
同步语句提供了比被同步的方法更细粒度(finer granularity)的锁机制,增强了类的并发性.
------------------------------------------------------------------------------------
比如 售票 票数是一定的,售票的人很多。如何保证 票数及时更新 这就需要 同步方法了。 锁就相当于是独占该资源,让别的对象不能访问到该资源。形象的说就是锁住了就是只属于你的东西,别人就看不到,更用不到了。
sleep貌似不需要获取锁的,而wait是需要获取锁的..
不知道我的答案是否能帮助你!
2、线程的线程的同步
线程的同步是Java多线程编程的难点,往往开发者搞不清楚什么是竞争资源、什么时候需要考虑同步,怎么同步等等问题,当然,这些问题没有很明确的答案,但有些原则问题需要考虑,是否有竞争资源被同时改动的问题?对于同步,在具体的Java代码中需要完成以下两个操作:把竞争访问的资源标识为private;同步哪些修改变量的代码,使用synchronized关键字同步方法或代码。当然这不是唯一控制并发安全的途径。synchronized关键字使用说明synchronized只能标记非抽象的方法,不能标识成员变量。为了演示同步方法的使用,构建了一个信用卡账户,起初信用额为100w,然后模拟透支、存款等多个操作。显然银行账户User对象是个竞争资源,而多个并发操作的是账户方法oper(int x),当然应该在此方法上加上同步,并将账户的余额设为私有变量,禁止直接访问。
工作原理
线程是进程中的实体,一个进程可以拥有多个线程,一个线程必须有一个父进程。线程不拥有系统资源,只有运行必须的一些数据结构;它与父进程的其它线程共享该进程所拥有的全部资源。线程可以创建和撤消线程,从而实现程序的并发执行。一般,线程具有就绪、阻塞和运行三种基本状态。
在多中央处理器的系统里,不同线程可以同时在不同的中央处理器上运行,甚至当它们属于同一个进程时也是如此。大多数支持多处理器的操作系统都提供编程接口来让进程可以控制自己的线程与各处理器之间的关联度(affinity)。
有时候,线程也称作轻量级进程。就象进程一样,线程在程序中是独立的、并发的执行路径,每个线程有它自己的堆栈、自己的程序计数器和自己的局部变量。但是,与分隔的进程相比,进程中的线程之间的隔离程度要小。它们共享内存、文件句柄和其它每个进程应有的状态。
进程可以支持多个线程,它们看似同时执行,但互相之间并不同步。一个进程中的多个线程共享相同的内存地址空间,这就意味着它们可以访问相同的变量和对象,而且它们从同一堆中分配对象。尽管这让线程之间共享信息变得更容易,但您必须小心,确保它们不会妨碍同一进程里的其它线程。
Java 线程工具和 API看似简单。但是,编写有效使用线程的复杂程序并不十分容易。因为有多个线程共存在相同的内存空间中并共享相同的变量,所以您必须小心,确保您的线程不会互相干扰。
线程属性
为了正确有效地使用线程,必须理解线程的各个方面并了解Java 实时系统。必须知道如何提供线程体、线程的生命周期、实时系统如 何调度线程、线程组、什么是幽灵线程(Demo nThread)。
线程体
所有的操作都发生在线程体中,在Java中线程体是从Thread类继承的run()方法,或实现Runnable接口的类中的run()方法。当线程产生并初始化后,实时系统调用它的run()方法。run()方法内的代码实现所产生线程的行为,它是线程的主要部分。
线程状态
附图表示了线程在它的生命周期内的任何时刻所能处的状态以及引起状态改变的方法。这图并不是完整的有限状态图,但基本概括了线程中比较感兴趣和普遍的方面。以下讨论有关线程生命周期以此为据。
●新线程态(New Thread)
产生一个Thread对象就生成一个新线程。当线程处于新线程状态时,仅仅是一个空线程对象,它还没有分配到系统资源。因此只能启动或终止它。任何其他操作都会引发异常。例如,一个线程调用了new方法之后,并在调用start方法之前的处于新线程状态,可以调用start和stop方法。
●可运行态(Runnable)
start()方法产生运行线程所必须的资源,调度线程执行,并且调用线程的run()方法。在这时线程处于可运行态。该状态不称为运行态是因为这时的线程并不总是一直占用处理机。特别是对于只有一个处理机的PC而言,任何时刻只能有一个处于可运行态的线程占用处理 机。Java通过调度来实现多线程对处理机的共享。注意,如果线程处于Runnable状态,它也有可能不在运行,这是因为还有优先级和调度问题。
●阻塞/非运行态(Not Runnable)
当以下事件发生时,线程进入非运行态。
①suspend()方法被调用;
②sleep()方法被调用;
③线程使用wait()来等待条件变量;
④线程处于I/O请求的等待。
●死亡态(Dead)
当run()方法返回,或别的线程调用stop()方法,线程进入死亡态。通常Applet使用它的stop()方法来终止它产生的所有线程。
线程的本操作:
派生:线程在进程内派生出来,它即可由进程派生,也可由线程派生。
阻塞(Block):如果一个线程在执行过程中需要等待某个事件发生,则被阻塞。
激活(unblock):如果阻塞线程的事件发生,则该线程被激活并进入就绪队列。
调度(schedule):选择一个就绪线程进入执行状态。
结束(Finish):如果一个线程执行结束,它的寄存器上下文以及堆栈内容等将被释放。
图2 线程的状态与操作
线程的另一个执行特性是同步。线程中所使用的同步控制机制与进程中所使用的同步控制机制相同。
线程优先级
虽然我们说线程是并发运行的。然而事实常常并非如此。正如前面谈到的,当系统中只有一个CPU时,以某种顺序在单CPU情况下执行多线程被称为调度(scheduling)。Java采用的是一种简单、固定的调度法,即固定优先级调度。这种算法是根据处于可运行态线程的相对优先级来实行调度。当线程产生时,它继承原线程的优先级。在需要时可对优先级进行修改。在任何时刻,如果有多条线程等待运行,系统选择优先级最高的可运行线程运行。只有当它停止、自动放弃、或由于某种原因成为非运行态低优先级的线程才能运行。如果两个线程具有相同的优先级,它们将被交替地运行。 Java实时系统的线程调度算法还是强制性的,在任何时刻,如果一个比其他线程优先级都高的线程的状态变为可运行态,实时系统将选择该线程来运行。一个应用程序可以通过使用线程中的方法setPriority(int),来设置线程的优先级大小。
有线程进入了就绪状态,需要有线程调度程序来决定何时执行,根据优先级来调度。
线程中的join()可以用来邀请其他线程先执行(示例代码如下):
packageorg.thread.test;publicclassJoin01implementsRunnable{publicstaticvoidmain(String[]args){for(inti=0;i<20;i++){if(i==5){Join01j=newJoin01();Threadt=newThread(j);t.setName(被邀请先执行的线程.);t.start();try{//邀请这个线程,先执行t.join();}catch(InterruptedExceptione){e.printStackTrace();}}System.out.println(没被邀请的线程。+(i+1));}}publicvoidrun(){for(inti=0;i<10;i++){System.out.println(Thread.currentThread().getName()+(i+1));}}}
yield()告诉系统把自己的CPU时间让掉,让其他线程或者自己运行,示例代码如下:
packageorg.thread.test;
publicclassYield01
{
publicstaticvoidmain(String[]args)
{
YieldFirstyf=newYieldFirst();
YieldSecondys=newYieldSecond();
YieldThirdyt=newYieldThird();
yf.start();ys.start();yt.start();
}
}
classYieldFirstextendsThread
{
@Overridepublicvoidrun()
{
for(inti=0;i<10;i++)
{
System.out.println(第一个线程第+(i+1)+次运行.);//让当前线程暂停yield();
}
}
}
classYieldSecondextendsThread
{
@Overridepublicvoidrun()
{
for(inti=0;i<10;i++)
{
System.out.println(第二个线程第+(i+1)+次运行.);//让当前线程暂停yield();
<a href=mailto:}}}classYieldThirdextendsThread{@Overridepublicvoidrun(){for(inti=0;i}
}
}
classYieldThirdextendsThread
{
@Overridepublicvoidrun(){for(inti=0;i<10;i++)
{
System.out.println(第三个线程第+(i+1)+次运行.);//让当前线程暂停yield();
}
}
幽灵线程
任何一个Java线程都能成为幽灵线程。它是作为运行于同一个进程内的对象和线程的服务提供者。例如,HotJava浏览器有一个称为 后台图片阅读器的幽灵线程,它为需要图片的对象和线程从文件系统或网络读入图片。 幽灵线程是应用中典型的独立线程。它为同一应用中的其他对象和线程提供服务。幽灵线程的run()方法一般都是无限循环,等待服务请求。
线程组
每个Java线程都是某个线程组的成员。线程组提供一种机制,使得多个线程集于一个对象内,能对它们实行整体操作。譬如,你能用一个方法调用来启动或挂起组内的所有线程。Java线程组由ThreadGroup类实现。
当线程产生时,可以指定线程组或由实时系统将其放入某个缺省的线程组内。线程只能属于一个线程组,并且当线程产生后不能改变它所属的线程组。
多线程
对于多线程的好处这就不多说了。但是,它同样也带来了某些新的麻烦。只要在设计程序时特别小心留意,克服这些麻烦并不算太困难。在生成线程时必须将线程放在指定的线程组,也可以放在缺省的线程组中,缺省的就是生成该线程的线程所在的线程组。一旦一个线程加入了某个线程组,不能被移出这个组。
同步线程
许多线程在执行中必须考虑与其他线程之间共享数据或协调执行状态。这就需要同步机制。在Java中每个对象都有一把锁与之对应。但Java不提供单独的lock和unlock操作。它由高层的结构隐式实现,来保证操作的对应。(然而,我们注意到Java虚拟机提供单独的monito renter和monitorexit指令来实现lock和
unlock操作。) synchronized语句计算一个对象引用,试图对该对象完成锁操作,并且在完成锁操作前停止处理。当锁操作完成synchronized语句体得到执行。当语句体执行完毕(无论正常或异常),解锁操作自动完成。作为面向对象的语言,synchronized经常与方法连用。一种比较好的办法是,如果某个变量由一个线程赋值并由别的线程引用或赋值,那么所有对该变量的访问都必须在某个synchromized语句或synchronized方法内。
现在假设一种情况:线程1与线程2都要访问某个数据区,并且要求线程1的访问先于线程2,则这时仅用synchronized是不能解决问题的。这在Unix或Windows NT中可用Simaphore来实现。而Java并不提供。在Java中提供的是wait()和notify()机制。使用如下:
synchronizedmethod_1(/*……*/){//calledbythread1.//accessdataareaavailable=true;notify();}synchronizedmethod_2(/*……*/){//calledbythread2.while(!available)try{wait();//waitfornotify().}catch(InterruptedExceptione){}//accessdataarea}
其中available是类成员变量,置初值为false。
如果在method-2中检查available为假,则调用wait()。wait()的作用是使线程2进入非运行态,并且解锁。在这种情况下,method-1可以被线程1调用。当执行notify()后。线程2由非运行态转变为可运行态。当method-1调用返回后。线程2可重新对该对象加锁,加锁成功后执行wait()返回后的指令。这种机制也能适用于其他更复杂的情况。
死锁
如果程序中有几个竞争资源的并发线程,那么保证均衡是很重要的。系统均衡是指每个线程在执行过程中都能充分访问有限的资源。系统中没有饿死和死锁的线程。Java并不提供对死锁的检测机制。对大多数的Java程序员来说防止死锁是一种较好的选择。最简单的防止死锁的方法是对竞争的资源引入序号,如果一个线程需要几个资源,那么它必须先得到小序号的资源,再申请大序号的资源。
优化
Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意。原因是,monitorenter与monitorexit这两个控制多线程同步的bytecode原语,是JVM依赖操作系统互斥(mutex)来实现的。而互斥是一种会导致线程挂起,并在较短的时间内又需要重新调度回原线程的,较为消耗资源的操作。所以需要进行对线程进行优化,提高效率。
轻量级锁
轻量级锁(Lightweight Locking)是从Java6开始引入的概念,本意是为了减少多线程进入互斥的几率,并不是要替代互斥。它利用了CPU原语Compare-And-Swap(CAS,汇编指令CMPXCHG),尝试在进入互斥前,进行补救。下面将详细介绍JVM如何利用CAS,实现轻量级锁。
Java Object Model中定义,Object Header是一个2字(1 word = 4 byte)长度的存储区域。第一个字长度的区域用来标记同步,GC以及hash code等,官方称之为 mark word。第二个字长度的区域是指向到对象的Class。在2个word中,mark word是轻量级锁实现的关键,其结构见右表。
从表中可以看到,state为lightweight locked的那行即为轻量级锁标记。bitfieds名为指向lock record的指针,这里的lock record,其实是一块分配在线程堆栈上的空间区域。用于CAS前,拷贝object上的mark word。第三项是重量级锁标记。后面的状态单词很有趣,inflated,译为膨胀,在这里意思其实是锁已升级到OS-level。一般我们只关注第二和第三项即可。lock,unlock与mark word之间的联系如右图所示。在图中,提到了拷贝object mark word,由于脱离了原始mark word,官方将它冠以displaced前缀,即displaced mark word(置换标记字)。这个displaced mark word是整个轻量级锁实现的关键,在CAS中的compare就需要用它作为条件。
在拷贝完object mark word之后,JVM做了一步交换指针的操作,即流程中第一个橙色矩形框内容所述。将object mark word里的轻量级锁指针指向lock record所在的stack指针,作用是让其他线程知道,该object monitor已被占用。lock record里的owner指针指向object mark word的作用是为了在接下里的运行过程中,识别哪个对象被锁住了。
最后一步unlock中,我们发现,JVM同样使用了CAS来验证object mark word在持有锁到释放锁之间,有无被其他线程访问。如果其他线程在持有锁这段时间里,尝试获取过锁,则可能自身被挂起,而mark word的重量级锁指针也会被相应修改。此时,unlock后就需要唤醒被挂起的线程。
偏向锁
Java偏向锁(Biased Locking)是Java 6引入的一项多线程优化。它通过消除资源无竞争情况下的同步原语,进一步提高了程序的运行性能。它与轻量级锁的区别在于,轻量级锁是通过CAS来避免进入开销较大的互斥操作,而偏向锁是在无竞争场景下完全消除同步,连CAS也不执行(CAS本身仍旧是一种操作系统同步原语,始终要在JVM与OS之间来回,有一定的开销)。所谓的无竞争场景,就是单线程访问带同步的资源或方法。
偏向锁,顾名思义,它会偏向于第一个访问锁的线程,如果在接下来的运行过程中,该锁没有被其他的线程访问,则持有偏向锁的线程将永远不需要触发同步。如果在运行过程中,遇到了其他线程抢占锁,则持有偏向锁的线程会被挂起,JVM会尝试消除它身上的偏向锁,将锁恢复到标准的轻量级锁。(偏向锁只能在单线程下起作用)。
偏向模式和非偏向模式,在mark word表中,主要体现在thread ID字段是否为空。
挂起持有偏向锁的线程,这步操作类似GC的pause,但不同之处是,它只挂起持有偏向锁的线程(非当前线程)。
在抢占模式的橙色区域说明中有提到,指向当前堆栈中最近的一个lock record(在轻量级锁中,lock record是进入锁前会在stack上创建的一份内存空间)。这里提到的最近的一个lock record,其实就是当前锁所在的stack frame上分配的lock record。整个步骤是从偏向锁恢复到轻量级锁的过程。
偏向锁也会带来额外开销。在JDK6中,偏向锁是默认启用的。它提高了单线程访问同步资源的性能。
但试想一下,如果你的同步资源或代码一直都是多线程访问的,那么消除偏向锁这一步骤对你来说就是多余的。事实上,消除偏向锁的开销还是蛮大的。所以在你非常熟悉自己的代码前提下,大可禁用偏向锁 -XX:-UseBiasedLocking。
分类
线程有两个基本类型:
用户级线程:管理过程全部由用户程序完成,操作系统内核心只对进程进行管理。
系统级线程(核心级线程):由操作系统内核进行管理。操作系统内核给应用程序提供相应的系统调用和应用程序接口API,以使用户程序可以创建、执行、撤消线程。
举例UNIX International 线程
UNIX International 线程的头文件是<thread.h> ,仅适用于Sun Solaris操作系统。所以UNIX International线程也常被俗称为Solaris线程。
1.创建线程
intthr_create(void*stack_base,size_tstack_size,void*(*start_routine)(void*),void*arg,longflags,thread_t*new_thr);
2.等待线程
intthr_join(thread_twait_for,thread_t*dead,void**status);
3.挂起线程
intthr_suspend(thread_tthr);
4.继续线程
intthr_continue(thread_tthr);
5.退出线程
voidthr_exit(void*status);
6.返回当前线程的线程标识符
thread_tthr_self(void);POSIX线程
POSIX线程(Pthreads)的头文件是<pthread.h>,适用于类Unix操作系统。Windows操作系统并没有对POSIX线程提供原生的支持库。不过Win32的POSIX线程库的一些实现也还是有的,例如pthreads-w32 。
1.创建线程
intpthread_create(pthread_t*thread,constpthread_attr_t*attr,void*(*start_routine)(void*),void*arg);
2.等待线程
intpthread_join(pthread_tthread,void**retval);
3.退出线程
voidpthread_exit(void*retval);
4.返回当前线程的线程标识符
pthread_tpthread_self(void);
5.线程取消
intpthread_cancel(pthread_tthread);Win32线程
Win32线程的头文件是<Windows.h>,适用于Windows操作系统。
1.创建线程
HANDLEWINAPICreateThread(LPSECURITY_ATTRIBUTESlpThreadAttributes,SIZE_TdwStackSize,LPTHREAD_START_ROUTINElpStartAddress,LPVOIDlpParameter,DWORDdwCreationFlags,LPDWORDlpThreadId);
2.结束本线程
VOIDWINAPIExitThread(DWORDdwExitCode);
3.挂起指定的线程
DWORDWINAPISuspendThread(HANDLEhThread);
4.恢复指定线程运行
DWORDWINAPIResumeThread(HANDLEhThread);
5.等待线程运行完毕
DWORDWINAPIWaitForSingleObject(HANDLEhHandle,DWORDdwMilliseconds);
6.返回当前线程的线程标识符
DWORDWINAPIGetCurrentThreadId(void);
7.返回当前线程的线程句柄
HANDLEWINAPIGetCurrentThread(void);C++ 11 线程
C++ 11 线程的头文件是<thread>。 创建线程
std::thread::thread(Function&& f, Args&&... args); 等待线程结束
std::thread::join(); 脱离线程控制
std::thread::detach(); 交换线程
std::thread::swap( thread& other ); C 11 线程
C11线程的头文件是<threads.h>。
C11线程仅仅是个“建议标准”,也就是说100%遵守C11标准的C编译器是可以不支持C11线程的。根据C11标准的规定,只要编译器预定义了__STDC_NO_THREADS__宏,就可以没有<threads.h>头文件,自然也就也没有下列函数。
1.创建线程
intthrd_create(thrd_t*thr,thrd_start_tfunc,void*arg);
2.结束本线程
_Noreturnvoidthrd_exit(intres);
3.等待线程运行完毕
intthrd_join(thrd_tthr,int*res);
4.返回当前线程的线程标识符
thrd_tthrd_current();Java线程
1)最简单的情况是,Thread/Runnable的run()方法运行完毕,自行终止。
2)对于更复杂的情况,比如有循环,则可以增加终止标记变量和任务终止的检查点。
3)最常见的情况,也是为了解决阻塞不能执行检查点的问题,用中断来结束线程,但中断只是请求,并不能完全保证线程被终止,需要执行线程协同处理。
4)IO阻塞和等锁情况下需要通过特殊方式进行处理。
5)使用Future类的cancel()方法调用。
6)调用线程池执行器的shutdown()和shutdownNow()方法。
7)守护线程会在非守护线程都结束时自动终止。
8)Thread的stop()方法,但已不推荐使用。
线程的组成
1)一组代表处理器状态的CPU寄存器中的内容
2)两个栈,一个用于当线程在内核模式下执行的时候,另一个用于线程在用户模式下执行的时候
3)一个被称为线程局部存储器(TLS,thread-local storage)的私有储存区域,各个子系统、运行库和DLL都会用到该储存区域
4)一个被称为线程ID(thread ID,线程标识符)的唯一标识符(在内部也被称为客户ID——进程ID和线程ID是在同一个名字空间中生产的,所以它们永远 不会重叠)
5)有时候线程也有它们自己的安全环境,如果多线程服务器应用程序要模仿其客户的安全环境,则往往可以利用线程的安全环境
3、求教:线程同步和进程同步有什么区别
线程同步:多线程编程中,解决共享资源冲突的问题进程同步:多进程编程中,解决共享资源冲突的问题
但是部分同学对线程同步和进程同步研究得不够深入,比如互斥锁和条件变量能不能同时用于线程同步和进程同步,本质上有什么区别。
首先我们知道,linux下每个进程都有自己的独立进程空间,假设A进程和B进程各有一个互斥锁,这个锁放在进程的全局静态区,那么AB进程都是无法感知对方的互斥锁的。
互斥锁和条件变量出自Posix.1线程标准,它们总是可以用来同步一个进程内的各个线程的。如果一个互斥锁或者条件变量存放在多个进程共享的某个内存区中,那么Posix还允许它用在这些进程间的同步。
看到这里,是不是发现点了什么,线程同步和进程同步的本质区别在于锁放在哪,放在私有的进程空间还是放在多进程共享的空间,并且看锁是否具备进程共享的属性, 进程至少包括一个主线程,还有工作线程
狭隘的讲:线程通信就是进程范围内主线程与工作线程 或者 工作线程之间的通信
进程通信,是进程A(可以理解为主线程) 与 进程B(可以理解为主线程)之间的通信
4、linux 下进程间的同步机制有哪些
linux下进程间同步的机制有以下三种:信号量
记录锁(文件锁)
共享内存中的mutex
效率上 共享内存mutex > 信号量 > 记录锁
posix 提供了新的信号量 - 有名信号量,既可以使用在进程间同步也可以作为线程间同步的手段。效率比共享内存mutex要好一些
5、Linux 多线程编程(二)2019-08-10
三种专门用于线程同步的机制:POSIX信号量,互斥量和条件变量.
在Linux上信号量API有两组,一组是System V IPC信号量,即PV操作,另外就是POSIX信号量,POSIX信号量的名字都是以sem_开头.
phshared参数指定信号量的类型,若其值为0,就表示这个信号量是当前进程的局部信号量,否则该信号量可以在多个进程之间共享.value值指定信号量的初始值,一般与下面的sem_wait函数相对应.
其中比较重要的函数sem_wait函数会以原子操作的方式将信号量的值减一,如果信号量的值为零,则sem_wait将会阻塞,信号量的值可以在sem_init函数中的value初始化;sem_trywait函数是sem_wait的非阻塞版本;sem_post函数将以原子的操作对信号量加一,当信号量的值大于0时,其他正在调用sem_wait等待信号量的线程将被唤醒.
这些函数成功时返回0,失败则返回-1并设置errno.
生产者消费者模型:
生产者对应一个信号量:sem_t producer;
消费者对应一个信号量:sem_t customer;
sem_init(&producer,2)----生产者拥有资源,可以工作;
sem_init(&customer,0)----消费者没有资源,阻塞;
在访问公共资源前对互斥量设置(加锁),确保同一时间只有一个线程访问数据,在访问完成后再释放(解锁)互斥量.
互斥锁的运行方式:串行访问共享资源;
信号量的运行方式:并行访问共享资源;
互斥量用pthread_mutex_t数据类型表示,在使用互斥量之前,必须使用pthread_mutex_init函数对它进行初始化,注意,使用完毕后需调用pthread_mutex_destroy.
pthread_mutex_init用于初始化互斥锁,mutexattr用于指定互斥锁的属性,若为NULL,则表示默认属性。除了用这个函数初始化互斥所外,还可以用如下方式初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER。
pthread_mutex_destroy用于销毁互斥锁,以释放占用的内核资源,销毁一个已经加锁的互斥锁将导致不可预期的后果。
pthread_mutex_lock以原子操作给一个互斥锁加锁。如果目标互斥锁已经被加锁,则pthread_mutex_lock则被阻塞,直到该互斥锁占有者把它给解锁.
pthread_mutex_trylock和pthread_mutex_lock类似,不过它始终立即返回,而不论被操作的互斥锁是否加锁,是pthread_mutex_lock的非阻塞版本.当目标互斥锁未被加锁时,pthread_mutex_trylock进行加锁操作;否则将返回EBUSY错误码。注意:这里讨论的pthread_mutex_lock和pthread_mutex_trylock是针对普通锁而言的,对于其他类型的锁,这两个加锁函数会有不同的行为.
pthread_mutex_unlock以原子操作方式给一个互斥锁进行解锁操作。如果此时有其他线程正在等待这个互斥锁,则这些线程中的一个将获得它.
三个打印机轮流打印:
输出结果:
如果说互斥锁是用于同步线程对共享数据的访问的话,那么条件变量就是用于在线程之间同步共享数据的值.条件变量提供了一种线程之间通信的机制:当某个共享数据达到某个值时,唤醒等待这个共享数据的线程.
条件变量会在条件不满足的情况下阻塞线程.且条件变量和互斥量一起使用,允许线程以无竞争的方式等待特定的条件发生.
其中pthread_cond_broadcast函数以广播的形式唤醒所有等待目标条件变量的线程,pthread_cond_signal函数用于唤醒一个等待目标条件变量线程.但有时候我们可能需要唤醒一个固定的线程,可以通过间接的方法实现:定义一个能够唯一标识目标线程的全局变量,在唤醒等待条件变量的线程前先设置该变量为目标线程,然后采用广播的方式唤醒所有等待的线程,这些线程被唤醒之后都检查该变量以判断是否是自己.
采用条件变量+互斥锁实现生产者消费者模型:
运行结果:
阻塞队列+生产者消费者
运行结果:

转载请带上网址:http://www.pos-diy.com/posjifour/268965.html
- 上一篇:pos机分论
- 下一篇:农行pos机年费多少钱